Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 43(12): 1135-1142, Dec. 2010. ilus, tab
Artigo em Inglês | LILACS | ID: lil-569002

RESUMO

We determined the influence of fasting (FAST) and feeding (FED) on cholesteryl ester (CE) flow between high-density lipoproteins (HDL) and plasma apoB-lipoprotein and triacylglycerol (TG)-rich emulsions (EM) prepared with TG-fatty acids (FAs). TG-FAs of varying chain lengths and degrees of unsaturation were tested in the presence of a plasma fraction at d > 1.21 g/mL as the source of CE transfer protein. The transfer of CE from HDL to FED was greater than to FAST TG-rich acceptor lipoproteins, 18 percent and 14 percent, respectively. However, percent CE transfer from HDL to apoB-containing lipoproteins was similar for FED and FAST HDL. The CE transfer from HDL to EM depended on the EM TG-FA chain length. Furthermore, the chain length of the monounsaturated TG-containing EM showed a significant positive correlation of the CE transfer from HDL to EM (r = 0.81, P < 0.0001) and a negative correlation from EM to HDL (r = -041, P = 0.0088). Regarding the degree of EM TG-FAs unsaturation, among EMs containing C18, the CE transfer was lower from HDL to C18:2 compared to C18:1 and C18:3, 17.7 percent, 20.7 percent, and 20 percent, respectively. However, the CE transfer from EMs to HDL was higher to C18:2 than to C18:1 and C18:3, 83.7 percent, 51.2 percent, and 46.3 percent, respectively. Thus, the EM FA composition was found to be the rate-limiting factor regulating the transfer of CE from HDL. Consequently, the net transfer of CE between HDL and TG-rich particles depends on the specific arrangement of the TG acyl chains in the lipoprotein particle core.


Assuntos
Humanos , Masculino , Ésteres do Colesterol/metabolismo , Gorduras na Dieta/metabolismo , Jejum/sangue , Lipoproteínas HDL/metabolismo , Triglicerídeos/metabolismo , Proteínas de Transporte/sangue , Gorduras na Dieta/administração & dosagem
2.
Braz. j. med. biol. res ; 40(3): 323-331, Mar. 2007. tab, graf
Artigo em Inglês | LILACS | ID: lil-441760

RESUMO

The metabolic effects of carbohydrate supplementation in mice have not been extensively studied. In rats, glucose- and fructose-rich diets induce hypertriacylglycerolemia. In the present study, we compared the metabolic responses to two monosaccharide supplementations in two murine models. Adult male Wistar rats (N = 80) and C57BL/6 mice (N = 60), after 3 weeks on a standardized diet, were submitted to dietary supplementation by gavage with glucose (G) or fructose (F) solutions (500 g/L), 8 g/kg body weight for 21 days. Glycemia was significantly higher in rats after fructose treatment (F: 7.9 vs 9.3 mM) and in mice (G: 6.5 vs 10 and F: 6.6 vs 8.9 mM) after both carbohydrate treatments. Triacylglycerolemia increased significantly 1.5 times in rats after G or F supplementation. Total cholesterol did not change with G treatment in rats, but did decrease after F supplementation (1.5 vs 1.4 mM, P < 0.05). Both supplementations in rats induced insulin resistance, as suggested by the higher Homeostasis Model Assessment Index. In contrast, mice showed significant decreases in triacylglycerol (G: 1.8 vs 1.4 and F: 1.9 vs 1.4 mM, P < 0.01) and total cholesterol levels (G and F: 2.7 vs 2.5 mM, P < 0.05) after both monosaccharide supplementations. Wistar rats and C57BL/6 mice, although belonging to the same family (Muridae), presented opposite responses to glucose and fructose supplementation regarding serum triacylglycerol, free fatty acids, and insulin levels after monosaccharide treatment. Thus, while Wistar rats developed features of plurimetabolic syndrome, C57BL/6 mice presented changes in serum biochemical profile considered to be healthier for the cardiovascular system.


Assuntos
Animais , Masculino , Camundongos , Ratos , Carboidratos da Dieta/efeitos adversos , Frutose/administração & dosagem , Glucose/administração & dosagem , Hipertrigliceridemia/etiologia , Resistência à Insulina , Colesterol/sangue , Modelos Animais de Doenças , Suplementos Nutricionais/efeitos adversos , Frutose/efeitos adversos , Glucose/efeitos adversos , Hipertrigliceridemia/metabolismo , Ratos Wistar , Triglicerídeos/sangue
3.
Braz. j. med. biol. res ; 38(3): 391-398, mar. 2005. tab, graf
Artigo em Inglês | LILACS | ID: lil-394808

RESUMO

We determined whether over-expression of one of the three genes involved in reverse cholesterol transport, apolipoprotein (apo) AI, lecithin-cholesterol acyl transferase (LCAT) and cholesteryl ester transfer protein (CETP), or of their combinations influenced the development of diet-induced atherosclerosis. Eight genotypic groups of mice were studied (AI, LCAT, CETP, LCAT/AI, CETP/AI, LCAT/CETP, LCAT/AI/CETP, and non-transgenic) after four months on an atherogenic diet. The extent of atherosclerosis was assessed by morphometric analysis of lipid-stained areas in the aortic roots. The relative influence (R²) of genotype, sex, total cholesterol, and its main sub-fraction levels on atherosclerotic lesion size was determined by multiple linear regression analysis. Whereas apo AI (R² = 0.22, P < 0.001) and CETP (R² = 0.13, P < 0.01) expression reduced lesion size, the LCAT (R² = 0.16, P < 0.005) and LCAT/AI (R² = 0.13, P < 0.003) genotypes had the opposite effect. Logistic regression analysis revealed that the risk of developing atherosclerotic lesions greater than the 50th percentile was 4.3-fold lower for the apo AI transgenic mice than for non-transgenic mice, and was 3.0-fold lower for male than for female mice. These results show that apo AI overexpression decreased the risk of developing large atherosclerotic lesions but was not sufficient to reduce the atherogenic effect of LCAT when both transgenes were co-expressed. On the other hand, CETP expression was sufficient to eliminate the deleterious effect of LCAT and LCAT/AI overexpression. Therefore, increasing each step of the reverse cholesterol transport per se does not necessarily imply protection against atherosclerosis while CETP expression can change specific athero genic scenarios.


Assuntos
Animais , Masculino , Camundongos , Apolipoproteína A-I/genética , Aterosclerose/genética , Proteínas de Transferência de Ésteres de Colesterol/genética , Dieta Aterogênica , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Transporte Biológico/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Modelos Animais de Doenças , Genótipo , Modelos Lineares , Camundongos Transgênicos , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA